Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

Spectrochim Acta A Mol Biomol Spectrosc. 2017 Aug 5:183:109-115. doi: 10.1016/j.saa.2017.04.028. Epub 2017 Apr 19.

Abstract

Ultrafast electronic relaxation processes following two photoexcitation of 400nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of ~85±10fs and 2.4±0.3ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

Keywords: Accidental resonance; Channel three; Internal conversion; Photoelectron imaging spectroscopy; Pump-probe.