Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway

Biochem Biophys Res Commun. 2017 Jun 3;487(3):607-612. doi: 10.1016/j.bbrc.2017.04.099. Epub 2017 Apr 19.

Abstract

Diabetes during pregnancy is associated with abnormal placenta mitochondrial function and increased oxidative stress, which affect fetal development and offspring long-term health. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and energy metabolism. The molecular mechanisms underlying the regulation of PGC-1α in placenta in the context of diabetes remain unclear. The present study examined the role of microRNA 130b (miR-130b-3p) in regulating PGC-1α expression and oxidative stress in a placental trophoblastic cell line (BeWo). Prolonged exposure of BeWo cells to high glucose mimicking hyperglycemia resulted in decreased protein abundance of PGC-1α and its downstream factor, mitochondrial transcription factor A (TFAM). High glucose treatment increased the expression of miR-130b-3p in BeWo cells, as well as exosomal secretion of miR-130b-3p. Transfection of BeWo cells with miR-130b-3p mimic reduced the abundance of PGC-1α, whereas inhibition of miR-130b-3p increased PGC-1α expression in response to high glucose, suggesting a role for miR-130b-3p in mediating high glucose-induced down regulation of PGC-1α expression. In addition, miR-130b-3p anti-sense inhibitor increased TFAM expression and reduced 4-hydroxynonenal (4-HNE)-induced production of reactive oxygen species (ROS). Taken together, these findings reveal that miR-130b-3p down-regulates PGC-1α expression in placental trophoblasts, and inhibition of miR-130b-3p appears to improve mitochondrial biogenesis signaling and protect placental trophoblast cells from oxidative stress.

Keywords: Hyperglycemia; Oxidative stress; PGC-1α; Placental trophoblast; miR-130b.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Humans
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Mitochondria / metabolism*
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • Organelle Biogenesis*
  • Oxidative Stress
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism*
  • Reactive Oxygen Species / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Tumor Cells, Cultured

Substances

  • DNA-Binding Proteins
  • MIRN130 microRNA, human
  • MicroRNAs
  • Mitochondrial Proteins
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Reactive Oxygen Species
  • Transcription Factors
  • mitochondrial transcription factor A