High-repetition-rate all-fiber femtosecond laser with an optical integrated component

Appl Opt. 2017 Mar 20;56(9):2504-2509. doi: 10.1364/AO.56.002504.

Abstract

We demonstrate a high-repetition-rate all-fiber soliton pulse laser mode-locked by the nonlinear polarization rotation technique. The laser cavity is effectively shortened by incorporating an optical integrated component possessing the hybrid functions of a polarization-dependent isolator, a wavelength-division multiplexer, and an output coupler. Resultant output soliton pulses have a fundamental repetition rate of 384 MHz, a 3-dB spectral bandwidth of 25.2 nm, and a dechirped pulse duration of 115 fs. By using an external power amplification and pulse recompression system, the average output power of the laser is boosted to 207 mW. The amplified pulses have a 2.33-ps duration, which is recompressed to 340 fs. Numerical simulations reproduce the generation of high-repetition-rate soliton pulses in the fiber laser. Such a simple and low-cost high-repetition-rate fiber laser is a potential laser source for various practical applications.