Efimov physics: a review

Rep Prog Phys. 2017 May;80(5):056001. doi: 10.1088/1361-6633/aa50e8. Epub 2017 Mar 28.

Abstract

This article reviews theoretical and experimental advances in Efimov physics, an array of quantum few-body and many-body phenomena arising for particles interacting via short-range resonant interactions, that is based on the appearance of a scale-invariant three-body attraction theoretically discovered by Vitaly Efimov in 1970. This three-body effect was originally proposed to explain the binding of nuclei such as the triton and the Hoyle state of carbon-12, and later considered as a simple explanation for the existence of some halo nuclei. It was subsequently evidenced in trapped ultra-cold atomic clouds and in diffracted molecular beams of gaseous helium. These experiments revealed that the previously undetermined three-body parameter introduced in the Efimov theory to stabilise the three-body attraction typically scales with the range of atomic interactions. The few- and many-body consequences of the Efimov attraction have been since investigated theoretically, and are expected to be observed in a broader spectrum of physical systems.

Publication types

  • Research Support, Non-U.S. Gov't