An integrated assessment framework for the analysis of multiple pressures in aquatic ecosystems and the appraisal of management options

Sci Total Environ. 2017 Jan 1:575:1477-1488. doi: 10.1016/j.scitotenv.2016.10.020. Epub 2016 Oct 27.

Abstract

The contribution illustrates an integrated assessment framework aimed at evaluating the relationships between multiple pressures and water body status for the purposes of river basin management. The framework includes the following steps. (1) Understanding how the different pressures affect the status of water bodies. This entails the characterization of biophysical state variables and the definition of a causal relationship between pressures and status. Therefore this step involves interaction between experts bearing ecological understanding and experts providing models to represent the effect of pressures. (2) Identifying the relevant pressures to be addressed through appropriate measures to improve the status of water bodies. (3) Evaluating reduction targets for the relevant pressures identified in a river basin, by weighting the effort associated to reducing individual pressures and the potential benefits in terms of water body status. (4) Designing management measures through a creative process and political discussion of alternative options, balancing costs, benefits and effectiveness based on engineering and economic analysis. (5) Simulating scenarios of implementation of a programme of measures in order to check their effectiveness and robustness against climate and land use change. We discuss the five steps of the assessment framework, and particularly the interaction between science and policy at the different stages. We review the assessment tools required at each step and, for setting optimal pressure reduction targets (step 3), we propose and illustrate a simplified multicriteria approach based on semi-quantitative assessment, which produces frontiers of optimal trade-offs between effort spent on measures, and achievements.

Keywords: Decision support; Multiple pressures; Optimization; River basin management measures; Water Framework Directive; Water bodies status.