Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons

Sci Total Environ. 2017 Sep 1:593-594:124-133. doi: 10.1016/j.scitotenv.2017.03.096. Epub 2017 Mar 23.

Abstract

Biochar has been suggested as a potential tailored technology for mediating soil conditions and improving crop yields. However, the efficacies of biochar and biochar-based amendments (e.g., composted biochar) in agricultural soils under a rotation system remain uncertain. In this study, an arable soil was subjected to peanut shell biochar (PBC) and biochar-based amendment (PAD) combined with or without nitrogen (N) fertilizer to evaluate their effects on vegetable yield, N bioavailability, and their relative contribution to vegetable biomass in four consecutive planting seasons. PBC alone or in co-application with N fertilizer had little effect on vegetable yield, while PAD co-application with N fertilizer decreased vegetable biomass because of the inhibition of root morphology by excessive nutrient supply. PBC and PAD applications increased rhizosphere soil pH due to OH- and HCO3- release and NO3--N uptake. Although the addition of PAD increased soil N contents due to its high contents in PAD, it had little effects on N utilization efficiency (NUE) in the four seasons. The relative contribution of PBC, PAD, and their interaction with N fertilizer to biomass yield was maintained at a low level. Our results indicated that a biochar-based amendment (e.g., PAD) was a potential alternative to N fertilizer, but the ratio of biochar to additives should be managed carefully to generate optimal benefits. Notably, the efficacy of PAD on plant growth was closely associated with plant species, and further related research on different plants is encouraged.

Keywords: Compost; Nitrogen; Nitrogen utilization efficiency; Rotation; Soil quality.