Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway

Sci Rep. 2017 Mar 24:7:44689. doi: 10.1038/srep44689.

Abstract

Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Anti-Inflammatory Agents / pharmacology*
  • Cell Adhesion / drug effects
  • Disease Models, Animal
  • Gene Expression Regulation / drug effects*
  • Human Umbilical Vein Endothelial Cells / cytology
  • Human Umbilical Vein Endothelial Cells / drug effects*
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Inflammation
  • Intercellular Adhesion Molecule-1 / genetics*
  • Intercellular Adhesion Molecule-1 / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • MicroRNAs / genetics
  • MicroRNAs / metabolism
  • Monocytes / drug effects
  • Monocytes / metabolism
  • Monocytes / pathology
  • Peritonitis / chemically induced
  • Peritonitis / drug therapy*
  • Peritonitis / genetics
  • Peritonitis / pathology
  • Primary Cell Culture
  • Resveratrol
  • Signal Transduction
  • Sirtuin 1 / genetics
  • Sirtuin 1 / metabolism
  • Stilbenes / pharmacology*
  • Transcription Factor RelA / genetics
  • Transcription Factor RelA / metabolism
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors
  • Tumor Necrosis Factor-alpha / pharmacology*
  • p38 Mitogen-Activated Protein Kinases / genetics
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Anti-Inflammatory Agents
  • MIRN221 microRNA, human
  • MIRN222 microRNA, human
  • MicroRNAs
  • Stilbenes
  • Transcription Factor RelA
  • Tumor Necrosis Factor-alpha
  • Intercellular Adhesion Molecule-1
  • p38 Mitogen-Activated Protein Kinases
  • AMP-Activated Protein Kinases
  • SIRT1 protein, human
  • Sirtuin 1
  • Resveratrol