Tuning the Magnitude and the Polarity of the Piezoresistive Response of Polyaniline through Structural Control

ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12766-12772. doi: 10.1021/acsami.7b00101. Epub 2017 Mar 28.

Abstract

We demonstrate the tunability of both the polarity and the magnitude of the piezoresistive response of polyaniline that is template-synthesized on poly(2-acrylamido-2-methyl-1-propanesulfonic acid), PANI-PAAMPSA, by altering the template molecular weight. Piezoresistivity is quantified by gauge factor, a unitless parameter that relates changes in electrical resistance to applied strain. The gauge factor of PANI-PAAMPSA decreases linearly and becomes negative with decreasing PAAMPSA molecular weight. The polarity of PANI-PAAMPSA's gauge factor is determined by macroscopic connectivity across thin films. PANI-PAAMPSA thin films comprise electrostatically stabilized particles whose size is determined at the onset of synthesis. An increase in the interparticle spacing with applied strain results in a positive gauge factor. The presence of PANI crystallites increases connectivity between particles; these samples instead exhibit a negative gauge factor whereby the resistance decreases with increasing strain. The tunability of the piezoresistive response of these conducting polymers allows their utilization in a broad range of flexible electronics applications, including thermo- and chemoresistive sensors and strain gauges.

Keywords: conducting polymers; flexible electronics; gauge factor; piezoresistivity; polyaniline; resistive sensors; strain gauge.