Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals

Nanotechnology. 2017 Jun 16;28(24):245202. doi: 10.1088/1361-6528/aa67ca. Epub 2017 Mar 20.

Abstract

Graphene quantum dots (GQDs) have received much research attention, because of their useful structure and optical absorption/emission. We report the tunable amplified spontaneous emission (ASE) in GQD-doped cholesteric liquid crystal (CLC), which to the best of our knowledge has not been previously observed. The GQDs are uniformly dispersed with a weight ratio of 0.5 wt.% in CLC. Under optical excitation, typical ASE is triggered in the system at pump energies greater than 1.25 mJ cm-2. The emission peak at the long wavelength edge of the photonic bandgap shifts from 662 to 669 nm, as the working temperature is increased from 50 to 90 °C. The preparation of the combined GQDs and CLC is simple and low-cost, and the resulting material is photostable and non-toxic. Combining the GQD gain material with the self-assembled CLC resonator has potential in the fabrication of ASE source and laser devices.