Food web analysis of southern California coastal wetlands using multiple stable isotopes

Oecologia. 1997 Apr;110(2):262-277. doi: 10.1007/s004420050159.

Abstract

Carbon, nitrogen, and sulfur stable isotopes were used to characterize the food webs (i.e., sources of carbon and trophic status of consumers) in Tijuana Estuary and San Dieguito Lagoon. Producer groups were most clearly differentiated by carbon, then by sulfur, and least clearly by nitrogen isotope measurements. Consumer 15N isotopic enrichment suggested that there are four trophic levels in the Tijuana Estuary food web and three in San Dieguito Lagoon. A significant difference in multiple isotope ratio distributions of fishes between wetlands suggested that the food web of San Dieguito Lagoon is less complex than that of Tijuana Estuary. Associations among sources and consumers indicated that inputs from intertidal macroalgae, marsh microalgae, and Spartina foliosa provide the organic matter that supports invertebrates, fishes, and the light-footed clapper rail (Rallus longirostris levipes). These three producers occupy tidal channels, low salt marsh, and mid salt marsh habitats. The only consumer sampled that appears dependent upon primary productivity from high salt marsh habitat is the sora (Porzana carolina). Two- and three-source mixing models identified Spartina as the major organic matter source for fishes, and macroalgae for invertebrates and the light-footed clapper rail in Tijuana Estuary. In San Dieguito Lagoon, a system lacking Spartina, inputs of macroalgae and microalgae support fishes. Salicornia virginica, S. subterminalis, Monanthochloe littoralis, sewage- derived organic matter, and suspended particulate organic matter were deductively excluded as dominant, direct influences on the food web. The demonstration of a salt marsh-channel linkage in these systems affirms that these habitats should be managed as a single ecosystem and that the restoration of intertidal marshes for endangered birds and other biota is compatible with enhancement of coastal fish populations; heretofore, these have been considered to be competing objectives.

Keywords: Key words Food web; Stable isotopes; Restoration; Salt marsh; Wetland.