Magic angle spinning NMR study of the ferroelectric transition of KH2PO4: definitive evidence of a displacive component

J Phys Condens Matter. 2017 Apr 26;29(16):16LT01. doi: 10.1088/1361-648X/aa638a. Epub 2017 Mar 17.

Abstract

Variable temperature magic angle spinning (MAS) NMR measurements are reported on 1H and 31P nuclei in KH2PO4 (KDP) in the vicinity of its paraelectric-ferroelectric phase transition temperature, T c, of 123 K, to examine the transition mechanism, in particular if this is a model order-disorder type or whether it also involves a displacive component. It has been well established that the temperature variation of the isotropic chemical shift, δ iso, in NMR measurements of the nuclei directly involved in the transition should remain constant or change smoothly through T c for an order-disorder type transition but it should show an anomalous change for a displacive one. Here we demonstrate that the δ iso for both 31P and 1H nuclei in KDP show clear anomalies as a function of temperature around KDP's T c, providing direct evidence of a displacive component for the phase transition of KDP in contrast to the generally accepted notion that it is a model order-disorder type.