Aligned Poly(ε-caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cell-Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro

Macromol Biosci. 2017 Jul;17(7). doi: 10.1002/mabi.201600517. Epub 2017 Mar 15.

Abstract

Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

Keywords: 3D environment; differentiated neural cell; human pluripotent stem cell; nanofiber; orientation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astrocytes / cytology
  • Astrocytes / metabolism*
  • Cell Movement*
  • Human Embryonic Stem Cells / cytology
  • Human Embryonic Stem Cells / metabolism*
  • Humans
  • Nanofibers / chemistry*
  • Neurons / cytology
  • Neurons / metabolism*
  • Oligodendroglia / cytology
  • Oligodendroglia / metabolism*
  • Polyesters / chemistry*

Substances

  • Polyesters
  • polycaprolactone