Wettability effect on nanoconfined water flow

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3358-3363. doi: 10.1073/pnas.1612608114. Epub 2017 Mar 13.

Abstract

Understanding and controlling the flow of water confined in nanopores has tremendous implications in theoretical studies and industrial applications. Here, we propose a simple model for the confined water flow based on the concept of effective slip, which is a linear sum of true slip, depending on a contact angle, and apparent slip, caused by a spatial variation of the confined water viscosity as a function of wettability as well as the nanopore dimension. Results from this model show that the flow capacity of confined water is 10-1∼107 times that calculated by the no-slip Hagen-Poiseuille equation for nanopores with various contact angles and dimensions, in agreement with the majority of 53 different study cases from the literature. This work further sheds light on a controversy over an increase or decrease in flow capacity from molecular dynamics simulations and experiments.

Keywords: nanoconfined water flow; nanopores; slip; viscosity; wettability.

Publication types

  • Research Support, Non-U.S. Gov't