Effects of nintedanib on the microvascular architecture in a lung fibrosis model

Angiogenesis. 2017 Aug;20(3):359-372. doi: 10.1007/s10456-017-9543-z. Epub 2017 Mar 10.

Abstract

Nintedanib, a tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis, has anti-fibrotic, anti-inflammatory, and anti-angiogenic activity. We explored the impact of nintedanib on microvascular architecture in a pulmonary fibrosis model. Lung fibrosis was induced in C57Bl/6 mice by intratracheal bleomycin (0.5 mg/kg). Nintedanib was started after the onset of lung pathology (50 mg/kg twice daily, orally). Micro-computed tomography was performed via volumetric assessment. Static lung compliance and forced vital capacity were determined by invasive measurements. Mice were subjected to bronchoalveolar lavage and histologic analyses, or perfused with a casting resin. Microvascular corrosion casts were imaged by scanning electron microscopy and synchrotron radiation tomographic microscopy, and quantified morphometrically. Bleomycin administration resulted in a significant increase in higher-density areas in the lungs detected by micro-computed tomography, which was significantly attenuated by nintedanib. Nintedanib significantly reduced lung fibrosis and vascular proliferation, normalized the distorted microvascular architecture, and was associated with a trend toward improvement in lung function and inflammation. Nintedanib resulted in a prominent improvement in pulmonary microvascular architecture, which outperformed the effect of nintedanib on lung function and inflammation. These findings uncover a potential new mode of action of nintedanib that may contribute to its efficacy in idiopathic pulmonary fibrosis.

Keywords: Angiogenesis inhibitors; Idiopathic pulmonary fibrosis; Intussusceptive angiogenesis; Microvascular corrosion casting; Synchrotron radiation tomographic microscopy.

MeSH terms

  • Animals
  • Bleomycin
  • Cell Proliferation / drug effects
  • Collagen / metabolism
  • Disease Models, Animal
  • Idiopathic Pulmonary Fibrosis / diagnostic imaging
  • Idiopathic Pulmonary Fibrosis / drug therapy*
  • Idiopathic Pulmonary Fibrosis / pathology
  • Idiopathic Pulmonary Fibrosis / physiopathology
  • Imaging, Three-Dimensional
  • Indoles / therapeutic use*
  • Mice, Inbred C57BL
  • Microvessels / diagnostic imaging
  • Microvessels / drug effects
  • Microvessels / ultrastructure*
  • Neovascularization, Physiologic / drug effects
  • Pneumonia / complications
  • Pneumonia / diagnostic imaging
  • Pneumonia / pathology
  • Pneumonia / physiopathology
  • Pulmonary Alveoli / drug effects
  • Pulmonary Alveoli / pathology
  • Pulmonary Alveoli / ultrastructure
  • Respiratory Function Tests
  • X-Ray Microtomography

Substances

  • Indoles
  • Bleomycin
  • Collagen
  • nintedanib