Impact of Soot on NOx Adsorption over Cu-Modified Hydrotalcite-Derived Lean NOx Trap Catalyst

Langmuir. 2017 Mar 28;33(12):2939-2948. doi: 10.1021/acs.langmuir.6b03877. Epub 2017 Mar 14.

Abstract

The impact of soot on NOx adsorption was studied over a Cu-modified hydrotalcite-derived lean NOx trap catalyst in a NO + O2 atmosphere. Powder X-ray diffraction, scanning electron microscopy, Raman scattering spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the surface properties of the pure catalyst and the soot/catalyst mixture. The adsorbed NOx species on the samples were evaluated by in situ diffuse reflectance Fourier transform spectroscopy. The soot coverage decreases the available adsorption sites on the surface of the catalyst, and a portion of active oxygen species are consumed by the soot oxidation during He pretreatment process. The NOx adsorption on two catalyst samples simultaneously undergoes two routes: the "nitrite route" and the "nitrate route". The "nitrite route" is more dominant than the "nitrate route". During NOx adsorption, the soot oxidation weakens the NO oxidation to NO2, and the released CO2 competes with NOx on the adsorption sites. Moreover, the temperature-programmed desorption tests indicate that the presence of soot reduces the NOx storage capacity of the catalyst and shifts the NO desorption peak to the lower temperature range by 50 °C.

Publication types

  • Research Support, Non-U.S. Gov't