Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures

J Mol Model. 2017 Mar;23(3):94. doi: 10.1007/s00894-017-3261-8. Epub 2017 Feb 28.

Abstract

Molecular dynamics simulation of argon, krypton, and their binary mixtures were performed at different temperatures and constant pressure (P = 1.013 bar) using GROMACS - Groningen Machine for Chemical Simulations. The gases are modeled by Lennard-Jones pair potential, with parameters taken from the literature. The study of radial distribution functions (RDFs) shows a single peak which indicates that there is no packing effect in gaseous state for argon, krypton, and their binary mixtures. The self-diffusion coefficients of argon and krypton is determined by using mean-square displacement(MSD) method and the mutual diffusion coefficients of binary mixtures are determined using Darken's relation. The values of simulated diffusion coefficients are compared with their corresponding theoretical values, numerical estimation, and experimental data. A good agreement between these sets of data is found. The diffusion coefficients obey Arrhenius behavior to a good extent for both pure components and binary mixtures. The values of simulated diffusion coefficient are used to estimate viscosities and thermal conductivities which agree with theoretical values, numerical estimation, and experimental data within 10 %. These results support that the LJ potential is sufficient for description of molecular interactions in argon and krypton.

Keywords: Arrhenius behavior; Diffusion coefficient; Lennard–Jones; MSD; Molecular dynamics; Thermal conductivity; Viscosity.