Ultrasound-Mediated Self-Healing Hydrogels Based on Tunable Metal-Organic Bonding

Biomacromolecules. 2017 Apr 10;18(4):1162-1171. doi: 10.1021/acs.biomac.6b01841. Epub 2017 Mar 9.

Abstract

Stimulus-responsive hydrogels make up an important class of programmable materials for a wide range of biomedical applications. Ultrasound (US) is a stimulus that offers utility because of its ability to permeate tissue and rapidly induce chemical alterations in aqueous media. Here we report on the synthesis and US-mediated disintegration of stimulus-responsive telechelic Dopa-modified polyethylene glycol-based hydrogels. Fe3+-[PEG-Dopa]4 hydrogels are formed through Fe3+-induced cross-linking of four-arm polyethylene glycol-dopamine precursors to produce networks. The relative amounts of H-bonds, coordination bonds, and covalent bonds can be controlled by the [Fe3+]:[Dopa] molar ratio in precursor solutions. Networks formed from precursors with high [Fe3+]:[Dopa] ratios create mechanically robust networks (G' = 6880 ± 240 Pa) that are largely impervious to US-mediated disintegration at intensities of ≤43 W/cm2. Conversely, lightly cross-linked networks formed through [Fe3+]:[Dopa] molar ratios of <0.73 are susceptible to rapid disintegration upon exposure to US. Pulsatile US exposure allows temporal control over hydrogel disintegration and programmable self-healing. Sustained US energy can also stabilize hydrogels through the formation of additional cross-links via free radical-mediated coupling of pendant catechols. Taken together, the diverse ranges of mechanical behavior, self-healing capability, and differential susceptibility to ultrasonic disintegration suggest that Fe3+-[PEG-Dopa]4 hydrogels yield a class of application-specific stimulus-responsive polymers as smart materials for applications ranging from transient medical implants to matrices for smart drug delivery.

MeSH terms

  • Dopamine / chemistry
  • Drug Delivery Systems
  • Hydrogels / chemistry*
  • Iron / chemistry*
  • Polyethylene Glycols / chemistry
  • Ultrasonics*

Substances

  • Hydrogels
  • Polyethylene Glycols
  • Iron
  • Dopamine