Ex-situ catalytic pyrolysis of wastewater sewage sludge - A micro-pyrolysis study

Bioresour Technol. 2017 May:232:229-234. doi: 10.1016/j.biortech.2017.02.015. Epub 2017 Feb 7.

Abstract

Concerns over increasing amounts of sewage sludge and unsustainability of current disposal methods have led to development of alternative routes for sludge management. The large amount of organics in sewage sludge makes it potential feedstock for energy or fuel production via thermochemical pathways. In this study, ex-situ catalytic pyrolysis using HZSM-5 catalyst was explored for the production of olefinic and aromatic hydrocarbons and nutrient-rich char from sewage sludge. The optimal pyrolysis and catalysis temperatures were found to be 500°C and 600°C, respectively. Carbon yields of hydrocarbons from sewage sludge were higher than for lignocellulose; yield differences were attributed to the high extractives content in the sludge. Full recovery of most inorganic elements were found in the char, which suggests that catalyst deactivation maybe alleviated through ex-situ catalytic pyrolysis. Most of the nitrogen was retained in the char while 31.80% was released as ammonia, which suggests a potential for nitrogen recycling.

Keywords: Biochar; Catalytic pyrolysis; Sewage sludge; Waste management.

MeSH terms

  • Catalysis
  • Hot Temperature*
  • Microtechnology / methods*
  • Nitrogen
  • Sewage / chemistry*
  • Waste Management / methods*
  • Wastewater / chemistry*

Substances

  • Sewage
  • Waste Water
  • Nitrogen