Simultaneous High-Speed Recording of Sonoluminescence and Bubble Dynamics in Multibubble Fields

Phys Rev Lett. 2017 Feb 10;118(6):064301. doi: 10.1103/PhysRevLett.118.064301. Epub 2017 Feb 8.

Abstract

Multibubble sonoluminescence (MBSL) is the emission of light from imploding cavitation bubbles in dense ensembles or clouds. We demonstrate a technique of high-speed recording that allows imaging of bubble oscillations and motion together with emitted light flashes in a nonstationary multibubble environment. Hereby a definite experimental identification of light emitting individual bubbles, as well as details of their collapse dynamics can be obtained. For the extremely bright MBSL of acoustic cavitation in xenon saturated phosphoric acid, we are able to explore effects of bubble translation, deformation, and interaction on MBSL activity. The recordings with up to 0.5 million frames per second show that few and only the largest bubbles in the fields are flashing brightly, and that emission often occurs repetitively. Bubble collisions can lead to coalescence and the start or intensification of the emission, but also to its termination via instabilities and splitting. Bubbles that develop a liquid jet during collapse can flash intensely, but stronger jetting gradually reduces the emissions. Estimates of MBSL collapse temperature peaks are possible by numerical fits of transient bubble dynamics, in one case yielding 38 000 K.