Stabilization of different starting materials through vermicomposting in a continuous-feeding system: Changes in chemical and biological parameters

Waste Manag. 2017 Apr:62:33-42. doi: 10.1016/j.wasman.2017.02.008. Epub 2017 Feb 16.

Abstract

In this study the feasibility of Eisenia andrei to digest great amount of wastes including horse manure (HM), apple pomace (AP), grape pomace (GP), and digestate (DG) was monitored through a continuous-feeding system. New layers of fresh material were gradually added to form an aged-profile of layers in order to understand the interaction between earthworms and microorganisms during vermicomposting. Thus, changes in chemical and biological parameters were evaluated for 240days. The earthworm population reached maximum values in 120 d-old-layer, which was related to an increase in overall microbial biomass, assayed as dehydrogenase activity, in all of the processed materials. The pH was generally alkaline or neutral in all of the materials. The electrical conductivity did not modify significantly during vermicomposting, except in the case of the processed GP, and DG. The stabilization, in all of the processed materials, was detected after 240 d of vermicomposting, as indicated the decline in the content of dissolved organic carbon (DOC). The N-NO3- content exhibited an enhanced in the processed HM and AP, while a generalized decreased was found in the GP, and DG materials in 240 d-old-layer. The decline in microbial biomass activity, in all processed substrates, was related to a decrease in the earthworm activity after 240 d of vermicomposting, indicating a high degree of stabilization. However, the β-glucosidase, phosphatase, protease, and o-diphenol oxidase activities were different according to the age of layers and type of processed material. The phytotoxicity test indicated that the end products of the processed AP and DG were chemically stable and enriched with nutrients in comparison with the HM and GP vermicompost. This fact indicates to stabilization (maturation) in the end product, which is important for its safe disposal as an organic nutrient-rich product.

Keywords: Continuous-feeding system; Eisenia andrei; Enzymatic activities; Microbial biomass; Organic materials; Phytotoxicity test.

MeSH terms

  • Animals
  • Biodegradation, Environmental*
  • Fruit
  • Manure
  • Oligochaeta / physiology*
  • Refuse Disposal / methods*

Substances

  • Manure