Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes

J Strength Cond Res. 2017 Mar;31(3):582-594. doi: 10.1519/JSC.0000000000001584.

Abstract

Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.

MeSH terms

  • Adult
  • Antioxidants / metabolism
  • Athletes*
  • Biomarkers
  • Catalase / blood
  • Glutathione / blood
  • Humans
  • Male
  • Middle Aged
  • Oxidation-Reduction*
  • Oxidative Stress / physiology*
  • Protein Carbonylation / physiology
  • Running / physiology*
  • Thiobarbituric Acid Reactive Substances / metabolism

Substances

  • Antioxidants
  • Biomarkers
  • Thiobarbituric Acid Reactive Substances
  • Catalase
  • Glutathione