Nylon-Graphene Composite Nonwovens as Monolithic Conductive or Capacitive Fabrics

ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8308-8316. doi: 10.1021/acsami.7b00471. Epub 2017 Feb 21.

Abstract

Here we describe a nylon-graphene nonwoven (NGN) composite, prepared via melt-blowing of nylon-6 into nonwoven fabrics and infiltrate those with graphene oxide (GO) in aqueous dispersions, which were further chemically reduced into graphene to offer electrical conductivity. The correlation between the conductivity and the graphene loading is described by the percolation scaling law σ = (p - pc)t, with an exponent t of 1.2 and a critical concentration pc of 0.005 wt %, the lowest among all the nylon composites reported. Monolithic supercapacitors have been further developed on the nylon-GO nonwoven composites (NGO), via a programed CO2-laser patterning process. The nylon nonwoven works as an efficient matrix, providing high capacity to GO and ensuring enough electrode materials generated via the subsequent laser patterning processes. Our best monolithic supercapacitors exhibited an areal capacitance of 10.37 mF cm-2 in PVA-H2SO4 electrolyte, much higher than the 1-3 mF cm-2 reported for typical microsupercapacitors. Moreover, our supercapacitors were able to retain a capacitance density of 5.07 mF cm-2 at an ultrahigh scan rate (1 V s-1), probably due to the facilitated ion migration within the highly porous nonwoven framework. This is the first report of highly functional nylon-6 nonwovens, fabricated via industrially scalable pathways into low-cost conductive polymer matrices and disposable energy storage systems.

Keywords: conductive polymer composites; graphene oxide (GO); monolithic supercapacitors; nonwoven; nylon-6.