Is p53 Involved in Tissue-Specific Insulin Resistance Formation?

Oxid Med Cell Longev. 2017:2017:9270549. doi: 10.1155/2017/9270549. Epub 2017 Jan 17.

Abstract

p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Insulin Resistance / physiology*
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Tumor Suppressor Protein p53