Enabling Microfluidics: from Clean Rooms to Makerspaces

Trends Biotechnol. 2017 May;35(5):383-392. doi: 10.1016/j.tibtech.2017.01.001. Epub 2017 Feb 3.

Abstract

The traditional requirement for clean rooms and specialized skills has inhibited many biologists from pursuing new microfluidic innovations. Makerspaces provide a growing alternative to clean rooms: they provide low-cost access to fabrication equipment such as laser cutters, plotter cutters, and 3D printers; use commercially available materials; and attract a diverse community of product designers. This Opinion discusses the materials, tools, and building methodologies particularly suited for developing novel microfluidic devices in these spaces, with insight into biological applications and leveraging the maker community. The lower barrier to access of makerspaces ameliorates the otherwise poor accessibility and scalability of microfluidic prototyping.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biotechnology / instrumentation*
  • Biotechnology / organization & administration*
  • Environment, Controlled*
  • Equipment Design / methods
  • Equipment Failure Analysis / methods
  • Facility Design and Construction / methods*
  • Microfluidics / instrumentation*
  • Microfluidics / organization & administration*