Femtogram scale high frequency nano-optomechanical resonators in water

Opt Express. 2017 Jan 23;25(2):821-830. doi: 10.1364/OE.25.000821.

Abstract

A femtogram scale nanobeam optomechanical crystal (OMC) resonator operating in water is designed and demonstrated. After immersing the device in water, the mechanical Q-factor reduces to 6.6 from 2285 in air. The thermomechanical motion of the highly damped mechanical resonance in water can be resolved using the sensitive cavity optomechanical readout. The mechanical frequency is shifted to 5.251 GHz from 5.3 GHz in air due to the added motional inertia. From the thermomechanical noise spectrum of the mechanical resonance, a noise floor of 9.33am/Hz is achieved in water. Through 2D finite element method (FEM) simulations, the acoustic dissipation dominates the low mechanical Q-factor of the device during the interaction between the mechanical resonance and surrounding water. The mass sensitivity of the present device is estimated to be 1.33ag/Hz in water.