Molecular docking NS4B of DENV 1-4 with known bioactive phyto-chemicals

Bioinformation. 2016 Jun 15;12(3):140-148. doi: 10.6026/97320630012140. eCollection 2016.

Abstract

Dengue disease is a global disease that has no effective treatment. The dengue virus (DENV) NS4B is a target for designing specific antivirals due to its importance in viral replication. Medicinal plants have been a savior for dengue virus as they consist of a class of phytochemicals having anti-viral activity and can pose a new approach ofstrong drug against viruses. The present study analyzes the activity of compounds against NS4B of DENV (1-4) serotypes. In this study Catechin, Cianidanol, Epicatechin, Eupatoretin, Glabranin, Laurifolin, DL-Catechin, astherapeutic agents were filtered by using Lipinski rule's five and the drug-likeness property of these agents were used for assessment of pharmacological properties. The molecular docking results presented the 2-D structures of bioactive complex, which interacted with especially conserved residues of target domains. Interestingly, we find the Catechin, Laurifolin, Cianidanol have highest binding energy against NS4B in DENV-1,2,4 which is evident by the formation of more hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results revealed that the bioactive compound, especially Catechin has significant anti-dengue activities. In addition, this study may be helpful in further experimental investigations.

Keywords: Dengue Virus; Lipinski Rule’s; bioactive compounds; drug-likeness score; molecular docking.