Hazy Transparent Cellulose Nanopaper

Sci Rep. 2017 Jan 27:7:41590. doi: 10.1038/srep41590.

Abstract

The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3-15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3-91.5% and haze values are 4.9-11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6-92.1% but their haze value were 27.3-86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295-305 °C), and low thermal expansion (8.5-10.6 ppm/K) because of their high density (1.29-1.55 g/cm3) and crystallinity (73-80%).

Publication types

  • Research Support, Non-U.S. Gov't