Fluorine-free, liquid-repellent surfaces made from ionic liquid-infused nanostructured silicon

Monatsh Chem. 2017;148(1):167-177. doi: 10.1007/s00706-016-1888-2. Epub 2016 Dec 18.

Abstract

Abstract: Liquid-repellent surfaces based on slippery liquid-infused porous substrates (SLIPS) were prepared from porous, nanostructured silicon surfaces with different surface functionalization, infused with the polar ionic liquid 1-ethyl-3-methylimidazolium methylsulfate ([C2mim]MeSO4). Contrary to nonpolar SLIPS based on perfluorinated substrates and infusion liquids, [C2mim]MeSO4 forms stable SLIPS with high energy surfaces like native silicon (Si-SiO2) or ionic liquid-functionalized silicon (Si-[C3mim]Cl), whose liquid-repellent properties against low surface tension liquids (toluene, cyclohexane) were demonstrated by very low sliding angles (α < 3°) and low contact angle hysteresis (Δθ < 10°). These polar, ionic liquid-based SLIPS present a promising, environmentally benign extension of liquid-infused substrates to natural, high-energy oxide surfaces.

Keywords: Ionic liquids; Monolayers; Nanochemistry; Surface; Wetting.