De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease

Genome Med. 2017 Jan 26;9(1):8. doi: 10.1186/s13073-016-0394-9.

Abstract

Background: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood.

Methods: We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles.

Results: In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro. Moreover, three variants demonstrated dominant negative effects on HSPA1L and HSPA1A protein activity.

Conclusions: Our results indicate that de novo and rare mutations in HSPA1L are associated with IBD and provide insights into the pathogenesis of IBD, and also expand our understanding of the roles of HSP70s in human disease.

Keywords: Crohn's disease; Exome; Sequencing; Ulcerative colitis.

MeSH terms

  • Adolescent
  • Amino Acid Sequence
  • Child
  • Colitis, Ulcerative / genetics*
  • Colitis, Ulcerative / metabolism
  • Exome
  • Female
  • HSP70 Heat-Shock Proteins / genetics*
  • HSP70 Heat-Shock Proteins / metabolism
  • Humans
  • Male
  • Mutation, Missense*
  • Pedigree
  • Sequence Alignment
  • Sequence Analysis, DNA
  • White People / genetics

Substances

  • HSP70 Heat-Shock Proteins
  • HSPA1L protein, human