Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells

ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11392-11404. doi: 10.1021/acsami.6b14283. Epub 2017 Mar 27.

Abstract

In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.

Keywords: chitosan; chitosan-intercalated montmorillonite; human dental pulp stem cells; montmorillonite; nanofibrous scaffolds; neurodegenerative disorders; neuron differentiation; poly(vinyl alcohol).

MeSH terms

  • Bentonite
  • Cell Differentiation
  • Cell Proliferation
  • Chitosan
  • Dental Pulp*
  • Humans
  • Nanofibers
  • Polyvinyl Alcohol
  • Stem Cells
  • Tissue Engineering
  • Tissue Scaffolds

Substances

  • Bentonite
  • Polyvinyl Alcohol
  • Chitosan