Proposed Confidence Scale and ID Score in the Identification of Known-Unknown Compounds Using High Resolution MS Data

J Am Soc Mass Spectrom. 2017 Apr;28(4):709-723. doi: 10.1007/s13361-016-1556-0. Epub 2017 Jan 23.

Abstract

High-resolution (HR) MS instruments recording HR-full scan allow analysts to go further beyond pre-acquisition choices. Untargeted acquisition can reveal unexpected compounds or concentrations and can be performed for preliminary diagnosis attempt. Then, revealed compounds will have to be identified for interpretations. Whereas the need of reference standards is mandatory to confirm identification, the diverse information collected from HRMS allows identifying unknown compounds with relatively high degree of confidence without reference standards injected in the same analytical sequence. However, there is a necessity to evaluate the degree of confidence in putative identifications, possibly before further targeted analyses. This is why a confidence scale and a score in the identification of (non-peptidic) known-unknown, defined as compounds with entries in database, is proposed for (LC-) HRMS data. The scale is based on two representative documents edited by the European Commission (2007/657/EC) and the Metabolomics Standard Initiative (MSI), in an attempt to build a bridge between the communities of metabolomics and screening labs. With this confidence scale, an identification (ID) score is determined as [a number, a letter, and a number] (e.g., 2D3), from the following three criteria: I, a General Identification Category (1, confirmed, 2, putatively identified, 3, annotated compounds/classes, and 4, unknown); II, a Chromatography Class based on the relative retention time (from the narrowest tolerance, A, to no chromatographic references, D); and III, an Identification Point Level (1, very high, 2, high, and 3, normal level) based on the number of identification points collected. Three putative identification examples of known-unknown will be presented. Graphical Abstract ᅟ.

Keywords: High resolution mass spectrometry; Identification; Identification points; Known-unknown; Metabolites; Metabolomics; Screening.