Probing the Nodal Structure of Landau Level Wave Functions in Real Space

Phys Rev Lett. 2017 Jan 6;118(1):016803. doi: 10.1103/PhysRevLett.118.016803. Epub 2017 Jan 5.

Abstract

The inversion layer of p-InSb(110) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.