Evaluation of perforated demineralized dentin scaffold on bone regeneration in critical-size sheep iliac defects

Clin Oral Implants Res. 2017 Nov;28(11):e227-e235. doi: 10.1111/clr.13000. Epub 2017 Jan 17.

Abstract

Objectives: Regenerating critical-size bone injury is a major problem that continues to inspire the design of new graft materials. Therefore, tissue engineering has become a novel approach for targeting bone regeneration applications. Human teeth are a rich source of stem cells, matrix, trace metal ions, and growth factors. A vital tooth-derived demineralized dentin matrix is acid-insoluble and composed of cross-linked collagen with growth factors. In this study, we recycled human non-functional tooth into a unique geometric dentin scaffold, entitled perforated root-demineralized dentin matrix (PR-DDM). The aim of this study was to evaluate the feasibility of PR-DDM as the scaffold for regenerating bone in critical-size iliac defects.

Material and methods: Artificial macro-pores (1 mm in diameter) were added to human vital wisdom tooth after removing the enamel and pulp portions. The modified tooth was demineralized in 0.34 N HNO3 for 30 min and is referred to as PR-DDM scaffold. Critical-size defect (10 mm × 15 mm × 9 mm Ø) was created in the iliac crest of six adult sheep. The in vivo bone regeneration by the scaffold was evaluated by micro-CT, 3D micro-CT, and histological examination at 2 and 4 months post-implantation.

Results: PR-DDM exhibited better bone ingrowth, especially in the artificial macro-pores. The results of micro-CT and 3D micro-CT revealed good union between scaffold and native bone. New bone formation was observed in almost all portions of PR-DDM. Higher bone volume inside the scaffold was detected at 4 months compared with 2 months. New bone ingrowth was ankylosed with PR-DDM, and both osteoinduction and osteoconduction capability of PR-DDM were confirmed histologically. The ratio of new bone formation was higher at 4 months compared with 2 months by histomorphometric analysis.

Conclusions: Altogether, these results demonstrated that the human tooth-derived graft material with a unique geometric structure, PR-DDM, contributed to active bone ingrowth in critical-size bone defects. This novel scaffold may have great utility in the near-future clinical application.

Keywords: bone regeneration; critical defects; human dentin; scaffold.

MeSH terms

  • Animals
  • Bone Regeneration*
  • Dentin / transplantation*
  • Guided Tissue Regeneration / methods*
  • Humans
  • Ilium / injuries*
  • Ilium / surgery
  • Male
  • Sheep
  • Tissue Scaffolds*

Substances

  • Demineralized Dentin Matrix