Placental DAPK1 and autophagy marker LC3B-II are dysregulated by TNF-α in a gestational age-dependent manner

Histochem Cell Biol. 2017 Jun;147(6):695-705. doi: 10.1007/s00418-016-1537-1. Epub 2017 Jan 17.

Abstract

Autophagy, a cell-survival process responsible for degradation of protein aggregates and damaged organelles, is increasingly recognized as another mechanism essential for human placentation. A substantial body of experiments suggests inflammation and oxidative stress as the underlying stimuli for altered placental autophagy, giving rise to placenta dysfunction and pregnancy pathologies. Here, the hypothesis is tested whether or not pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α are able to influence the expression profile of autophagy genes in human first-trimester villous placenta. Autophagy-focused qPCR arrays identified substantial downregulation of death-associated protein kinase 1 (DAPK1) in first-trimester placental explants in response to IL-6 and TNF-α, respectively. Immunohistochemistry of placental explants detected considerable DAPK1 staining in placental macrophages, villous cytotrophoblasts and less intense in the syncytiotrophoblast. Both immunohistochemistry and Western blot showed decreased DAPK1 protein in TNF-α-treated placental explants compared to control. On cellular level, DAPK1 expression decreased in SGHPL-4 trophoblasts in response to TNF-α. Observed changes in the expression profile of autophagy-related genes were reflected by significantly decreased lipidation of autophagy marker microtubule-associated protein light chain 3 beta (LC3B-II) in first trimester placental explants in response to TNF-α. Analysis of TNF-α-treated term placental explants showed decreased DAPK1 protein, whereas in contrast to first-trimester LC3B expression and lipidation increased. Immunohistochemistry of placental tissues from early-onset preeclampsia (PE) showed less DAPK1 staining, when compared to controls. Accordingly, DAPK1 mRNA and protein were decreased in primary trophoblasts isolated from early-onset PE, while LC3B-I and -II were increased. Results from this study suggest that DAPK1, a regulator of apoptosis, autophagy and programmed necrosis, decreases in human placenta in response to elevated maternal TNF-α, irrespective of gestational age. In contrast, TNF-α differentially regulates levels of autophagy marker LC3B in human placenta over gestation.

Keywords: Autophagy; Inflammation; Placenta; Preeclampsia; Pregnancy; Trophoblast.

MeSH terms

  • Adult
  • Autophagy*
  • Biomarkers / metabolism
  • Death-Associated Protein Kinases / biosynthesis*
  • Death-Associated Protein Kinases / deficiency
  • Female
  • Gestational Age*
  • Humans
  • Microtubule-Associated Proteins / biosynthesis*
  • Microtubule-Associated Proteins / deficiency
  • Placenta / cytology
  • Placenta / drug effects*
  • Placenta / metabolism
  • Pregnancy
  • Pregnancy Trimester, First / drug effects*
  • Pregnancy Trimester, First / metabolism
  • Tumor Necrosis Factor-alpha / pharmacology*

Substances

  • Biomarkers
  • MAP1LC3B protein, human
  • Microtubule-Associated Proteins
  • Tumor Necrosis Factor-alpha
  • DAPK1 protein, human
  • Death-Associated Protein Kinases