Key players associated with tuberization in potato: potential candidates for genetic engineering

Crit Rev Biotechnol. 2017 Nov;37(7):942-957. doi: 10.1080/07388551.2016.1274876. Epub 2017 Jan 18.

Abstract

Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from "source to sink" have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.

Keywords: mRNA; phytochromes; phytohormones; transcription factors; tuberization.

Publication types

  • Review

MeSH terms

  • Gene Expression Regulation, Plant
  • Genetic Engineering*
  • Plant Proteins
  • Plant Tubers
  • Solanum tuberosum*

Substances

  • Plant Proteins