Transposon for protein engineering

Mob Genet Elements. 2016 Sep 22;6(6):e1239601. doi: 10.1080/2159256X.2016.1239601. eCollection 2016.

Abstract

Protein insertional fusion and circular permutation are 2 promising protein engineering techniques for creating integrated functionalities and sequence diversity of a protein, respectively. Finding insertion locations for protein insertional fusion and new termini for circular permutation through a rational approach is not always straightforward, especially, for proteins without detailed structural knowledge. On the contrary, a combinatorial approach facilitates a comprehensive search to evaluate all potential insertion sites and new termini locations. Conventional methods used to create random insertional fusion libraries generate sub-optimal inter-domain linker length and composition between fused proteins. There are also methods available for construction of random circular permutation libraries. However, these methods too, impose many drawbacks, such as significant sequence modification at the new termini of circular permutants and additionally, require re-design of transposons for tailored expression of circular permutants. Furthermore, these conventional methods employ relatively inefficient blunt-end ligation during library construction. In this commentary, we present a concise overview and key findings of engineered Mu transposons, which have recently been developed in our group as a facile and efficient tool to alleviate limitations realized from conventional methods and to construct high quality libraries for random insertional fusion and random circular permutation.

Keywords: MuRCP transposon; MuST transposon; combinatorial library; protein engineering; random circular permutation; random insertional fusion.

Publication types

  • Comment