Nonsingular defects and self-assembly of colloidal particles in cholesteric liquid crystals

Phys Rev E. 2016 Dec;94(6-1):062703. doi: 10.1103/PhysRevE.94.062703. Epub 2016 Dec 14.

Abstract

Cholesteric liquid crystals can potentially provide a means for tunable self-organization of colloidal particles. However, the structures of particle-induced defects and the ensuing elasticity-mediated colloidal interactions in these media remain much less explored and understood as compared to their nematic liquid crystal counterparts. Here we demonstrate how colloidal microspheres of varying diameter relative to the helicoidal pitch can induce dipolelike director field configurations in cholesteric liquid crystals, where these particles are accompanied by point defects and a diverse variety of nonsingular line defects forming closed loops. Using laser tweezers and nonlinear optical microscopy, we characterize the ensuing medium-mediated elastic interactions and three-dimensional colloidal assemblies. Experimental findings show a good agreement with numerical modeling based on minimization of the Landau-de Gennes free energy and promise both practical applications in the realization of colloidal composite materials and a means of controlling nonsingular topological defects that attract a great deal of fundamental interest.