Variability in the backscattering efficiency of particles in the Bohai and Yellow Seas and related effects on optical properties

Opt Express. 2016 Dec 26;24(26):29360-29379. doi: 10.1364/OE.24.029360.

Abstract

The backscattering efficiency of particles is a crucial factor that relates light backscattering with biogeochemical properties. In this study, based on in situ measurements of the backscattering coefficient (bbp(λ)), particle biogeochemical variables and remote sensing reflectance (Rrs(λ)) in two typical shallow and semi-enclosed seas, namely the Bohai Sea (BS) and Yellow Sea (YS) during the late spring, late summer and late autumn, we examined particulate pseudo-backscattering efficiency variability at 640 nm (P_Qbbe(640)) and related optical effects. The results show that the P_Qbbe(640) levels varied by nearly two orders for all of the samples examined. This high degree of P_Qbbe(640) variability significantly affected bbp(640) and the mass-specific backscattering coefficient (bbp*(640)), showing that approximately 63.7% and 20.8% of the variability in the bbp*(640) and bbp(640) was attributed to the P_Qbbe(640), respectively. More importantly, consistent with the observations of Wang et al. [J. Geophys. Res.: Oceans 121, 3955 (2016)], the P_Qbbe(640) results clearly showed two clusters and this clustering changed the relationships between bbp*(640), bbp(640) and Rrs(640) with the biogeochemical variables. However, we confirm that P_Qbbe(640) clustering generally remained intact across seasons. Therefore, a simple scheme based on a threshold of the P_Qbbe(640) data is proposed for the classification of particle types. With this classification, impacts of P_Qbbe(640) on bbp*(640) and bbp(640) were clearly reduced, and co-variation trends of bbp*(640), bbp(640) and Rrs(640) with biogeochemical variables can be in turn more accurately described. Overall, this study provides general information on P_Qbbe(640) variability in the BS and the YS and consequent effects on optical properties. The scheme for particle type classification may also provide a useful basis for better modeling marine biogeochemical processes related to particulate backscattering and for the development of ocean color algorithms.