Quantifying Raman OH-band spectra for remote water temperature measurements

Opt Lett. 2016 Oct 15;41(20):4625-4628. doi: 10.1364/OL.41.004625.

Abstract

Remote water temperature measurements by Raman scattering is a perspective tool for in situ and/or real-time studies for inaccessible areas such as the Arctic region. State-of-the-art laser remote temperature detection techniques are based on temperature-dependent transformation of the Raman OH stretching vibration band. This study compared different approaches quantifying Raman OH-band spectra transformation with temperature: the two-color technique, deconvolution procedure, Raman difference spectroscopy, and centroid technique. Distilled water was probed remotely by compact Raman LIDAR, and the results demonstrated that the Raman OH-band centroid technique achieved the best temperature measurement accuracy (±0.15°C).