Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis

PLoS One. 2016 Dec 19;11(12):e0168040. doi: 10.1371/journal.pone.0168040. eCollection 2016.

Abstract

Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

MeSH terms

  • Abscisic Acid / pharmacology*
  • Arabidopsis / drug effects
  • Arabidopsis / genetics*
  • Arabidopsis / growth & development
  • Droughts
  • Gene Expression Regulation, Plant
  • Germination
  • Phenotype
  • Phylogeny
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Plants, Genetically Modified / drug effects
  • Plants, Genetically Modified / growth & development*
  • Populus / genetics
  • Populus / metabolism*
  • Signal Transduction
  • Stress, Physiological

Substances

  • Plant Proteins
  • Abscisic Acid

Grants and funding

This study was supported by the Natural Science Foundation of Jiangsu Province of China (BK2012306) and National Natural Science Foundation of China grant (31271626).