Effects of acute cold exposure on oxidative balance and total antioxidant capacity in juvenile Chinese soft-shelled turtle, Pelodiscus sinensis

Integr Zool. 2017 Sep;12(5):371-378. doi: 10.1111/1749-4877.12247.

Abstract

Acute cold exposure may disturb the physiological homeostasis of the body in ectotherms. To date, there has been no information on the effects of cold exposure on homeostasis of reactive oxygen species (ROS) or antioxidant defense response in the Chinese soft-shelled turtle, Pelodiscus sinensis. In this study, P. sinensis juveniles were acclimated at 28 °C, transferred to 8 °C as cold exposure for 12 h, then moved back to 28 °C rewarming for 24 h. We measured the ROS level and total antioxidant capacity (TAC) in the brain, liver, kidney and spleen at 2 and 12 h cold exposure, and at the end of the rewarming period. Malonaldehyde (MDA) and carbonyl protein were used as markers of oxidative damage. Turtles being maintained simultaneously at 28 °C were used as the control group. Cold exposure did not disturb the ROS balance in all 4 tissues, while rewarming raised the ROS level in the brain and kidney of P. sinensis. Cold exposure and rewarming decreased the TAC in the brain, liver and spleen but did not change the TAC in the kidney. MDA and carbonyl protein levels did not increase during the treatment, indicating no oxidative damage in all 4 tissues of P. sinensis. Our results indicated that extreme cold exposure did not impact the inner oxidative balance of P. sinensis, but more ROS was produced during rewarming. P. sinensis showed good tolerance to the harsh temperature change through effective protection of its antioxidant defense system to oxidative damage. This study provides basic data on the stress biology of P. sinensis.

Keywords: Chinese soft-shelled turtle; cold exposure; oxidative damage; reactive oxygen species; total antioxidant capacity.

MeSH terms

  • Animals
  • Cold Temperature*
  • Liver
  • Oxidation-Reduction
  • Turtles / physiology*