BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell

ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1479-1487. doi: 10.1021/acsami.6b12782. Epub 2017 Jan 3.

Abstract

Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO4/WO3/SnO2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO3 deposition, leading to the formation of a double layer of dense WO3 and a WO3/SnO2 mixture at the bottom. Subsequently, a BiVO4 nanoparticle film was deposited by spin coating. Importantly, the WO3/(WO3+SnO2) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO4/WO3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm2 at 1.23 V vs RHE) compared to the previously reported BiVO4/WO3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoOx electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).

Keywords: BiVO4/WO3/SnO2; charge transport; double-heterojunction photoanode; tandem PEC device; transmittance.