On-Chip Optical Nonreciprocity Using an Active Microcavity

Sci Rep. 2016 Dec 13:6:38972. doi: 10.1038/srep38972.

Abstract

Optically nonreciprocal devices provide critical functionalities such as light isolation and circulation in integrated photonic circuits for optical communications and information processing, but have been difficult to achieve. By exploring gain-saturation nonlinearity, we demonstrate on-chip optical nonreciprocity with excellent isolation performance within telecommunication wavelengths using only one toroid microcavity. Compatible with current complementary metal-oxide-semiconductor process, our compact and simple scheme works for a very wide range of input power levels from ~10 microwatts down to ~10 nanowatts, and exhibits remarkable properties of one-way light transport with sufficiently low insertion loss. These superior features make our device become a promising critical building block indispensable for future integrated nanophotonic networks.

Publication types

  • Research Support, Non-U.S. Gov't