Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film

ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34335-34341. doi: 10.1021/acsami.6b11108. Epub 2016 Dec 9.

Abstract

Piezoelectric and triboelectric nanogenerators have been developed as rising energy-harvesting devices in the past few years to effectively convert mechanical energy into electricity. Here, a novel hybrid piezo/triboelectric nanogenerator based on BaTiO3 NP/PDMS composite film was developed in a simple and low-cost way. The effects of the BTO content and polarization degree on the output performance were systematically studied. The device with 20 wt % BTO in PDMS and a 100-μm-thick film showed the highest output power. We also designed three measurement modes to record hybrid, triboelectric, and piezoelectric outputs separately with a simple structure that has only two electrodes. The hybrid output performance is higher than the tribo- and piezoelectric performances. This work will provide not only a new way to enhance the output power of nanogenerators, but also new opportunities for developing built-in power sources in self-powered electronics.

Keywords: mechanical-energy harvesting; nanocomposite; nanogenerator; piezoelectric; triboelectric.