Structures and developmental alterations of N-glycans of zebrafish embryos

Glycobiology. 2017 Mar 4;27(3):228-245. doi: 10.1093/glycob/cww124.

Abstract

Zebrafish is a model organism suitable for studying vertebrate development. We analyzed the N-glycan structures of zebrafish embryos and their alterations during zebrafish embryogenesis to obtain basic data for studying the roles of N-glycosylation. Multiple modes of high-performance liquid chromatography and multistage mass spectrometry were used for structural analysis of N-glycans. The N-glycans from deyolked embryos at 36 hours postfertilization, a mid-pharyngula stage, contained relatively higher amounts of complex- and hybrid-type glycans with LacNAc (Galβ1-4GlcNAc) and/or sialyl LacNAc without additional β1,4-Gal, which are commonly found in mammalian tissues, as well as abundant oligomannose-type glycans. Some of the complex- and hybrid-type glycans possessed various extended LacNAc structures, such as Galβ1-4LacNAc, LacNAc-repeat or unique (+/- dHex)-GalNAcα1-GlcNAcβ1-LacNAc. In contrast, the yolk of the embryo contains predominant oligomannose-type glycans and complex-type glycans with Galβ1-4(Siaα2-3)Galβ1-4(Fucα1-3)GlcNAc antennae. N-Glycan profiles obtained from deyolked embryos at different stages showed stage-dependent variation of complex- and hybrid-type glycans. At gastrula and early segmentation stages, complex- and hybrid-type glycans were minor components, and their antenna structures were mainly sialyl LacdiNAc (Siaα2-6GalNAcβ1-4GlcNAc). From the mid-segmentation to pharyngula stages, those with LacNAc and/or α2,6-sialyl LacNAc antenna structures increased remarkably, and those with α2,3-sialyl LacNAc antenna, core α1,6-Fuc and bisecting GlcNAc modifications increased gradually. These results suggest the presence of mechanisms for regulating the antenna structures of complex/hybrid N-glycan biosynthesis in the phylotypic stage of vertebrate development.

Keywords: HPLC; LacNAc; N-glycosylation; multistage mass spectrometry; zebrafish.

MeSH terms

  • Animals
  • Carbohydrate Sequence
  • Chromatography, High Pressure Liquid
  • Embryo, Nonmammalian / chemistry
  • Embryo, Nonmammalian / metabolism
  • Embryonic Development*
  • Galactosyltransferases / chemistry
  • Galactosyltransferases / metabolism
  • Gastrula / growth & development
  • Gastrula / metabolism
  • Glycosylation
  • Lactose / analogs & derivatives
  • Lactose / chemistry
  • Lactose / metabolism
  • Polysaccharides / chemistry*
  • Polysaccharides / metabolism
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Zebrafish / genetics
  • Zebrafish / metabolism*

Substances

  • Polysaccharides
  • N-acetylgalactosaminyl-1-4-N-acetylglucosamine
  • Galactosyltransferases
  • N-acetyllactosamine alpha-D-galactosyltransferase
  • Lactose