Labeling of Breast Cancer Patient-derived Xenografts with Traceable Reporters for Tumor Growth and Metastasis Studies

J Vis Exp. 2016 Nov 30:(117):54944. doi: 10.3791/54944.

Abstract

The use of preclinical models to study tumor biology and response to treatment is central to cancer research. Long-established human cell lines, and many transgenic mouse models, often fail to recapitulate the key aspects of human malignancies. Thus, alternative models that better represent the heterogeneity of patients' tumors and their metastases are being developed. Patient-derived xenograft (PDX) models in which surgically resected tumor samples are engrafted into immunocompromised mice have become an attractive alternative as they can be transplanted through multiple generations,and more efficiently reflect tumor heterogeneity than xenografts derived from human cancer cell lines. A limitation to the use of PDXs is that they are difficult to transfect or transduce to introduce traceable reporters or to manipulate gene expression. The current protocol describes methods to transduce dissociated tumor cells from PDXs with high transduction efficiency, and the use of labeled PDXs for experimental models of breast cancer metastases. The protocol also demonstrates the use of labeled PDXs in experimental metastasis models to study the organ-colonization process of the metastatic cascade. Metastases to different organs can be easily visualized and quantified using bioluminescent imaging in live animals, or GFP expression during dissection and in excised organs. These methods provide a powerful tool to extend the use of multiple types of PDXs to metastasis research.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Breast Neoplasms*
  • Gene Expression Profiling
  • Heterografts*
  • Humans
  • Luminescent Measurements
  • Mice
  • Neoplasm Metastasis
  • Transduction, Genetic
  • Transplantation, Heterologous
  • Xenograft Model Antitumor Assays