Linear and nonlinear optical characterization of self-assembled, large-area gold nanosphere metasurfaces with sub-nanometer gaps

Opt Express. 2016 Nov 28;24(24):27360-27370. doi: 10.1364/OE.24.027360.

Abstract

We created centimeter-scale area metasurfaces consisting of a quasi-hexagonally close packed monolayer of gold nanospheres capped with alkanethiol ligands on glass substrates using a directed self-assembly approach. We experimentally characterized the morphology and the linear and nonlinear optical properties of metasurfaces. We show these metasurfaces, with interparticle gaps of 0.6 nm, are modeled well using a classical (without charge transfer) description. We find a large dispersion of linear refractive index, ranging from values less than vacuum, 0.87 at 600 nm, to Germanium-like values of 4.1 at 880 nm, determined using spectroscopic ellipsometry. Nonlinear optical characterization was carried out using femtosecond Z-scan and we observe saturation behavior of the nonlinear absorption (NLA) and nonlinear refraction (NLR). We find a negative NLR from these metasurfaces two orders of magnitude larger (n2,sat = -7.94x10-9 cm2/W at Isat,n2 = 0.43 GW/cm2) than previous reports on gold nanostructures at similar femtosecond time scales. We also find the magnitude of the NLA comparable to the largest values reported (β2,sat = -0.90x105 cm/GW at Isat,β2 = 0.34 GW/cm2). Precise knowledge of the index of refraction is of crucial importance for emerging dispersion engineering technologies. Furthermore, utilizing this directed self-assembly approach enables the nanometer scale resolution required to develop the unique optical response and simultaneously provides high-throughput for potential device realization.