A large-scale chromosome-specific SNP discovery guideline

Funct Integr Genomics. 2017 Jan;17(1):97-105. doi: 10.1007/s10142-016-0536-6. Epub 2016 Nov 29.

Abstract

Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.

Keywords: Aegilops tauschii; Chromosome 5D-specific SNP; Wheat.

MeSH terms

  • Chromosomes, Plant / genetics
  • Genome, Plant
  • Genotype
  • Poaceae / genetics*
  • Poaceae / growth & development
  • Polymorphism, Single Nucleotide / genetics*
  • Transcriptome / genetics
  • Triticum / genetics*
  • Triticum / growth & development