Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary

Sensors (Basel). 2016 Nov 25;16(12):1997. doi: 10.3390/s16121997.

Abstract

The Multispectral Wide Field of View (WFV) camera on the Chinese GF-1 satellite, launched in 2013, has advantages of high spatial resolution (16 m), short revisit period (4 days) and wide scene swath (800 km) compared to the Landsat-8/OLI, which make it an ideal means of monitoring spatial-temporal changes of Suspended Particulate Matter (SPM) in large estuaries like the Yangtze Estuary. However, a lack of proper atmospheric correction methods has limited its application in water quality assessment. We propose an atmospheric correction method based on a look up table coupled by the atmosphere radiative transfer model (6S) and the water semi-empirical radiative transfer (SERT) model for inversion of water-leaving reflectance from GF-1 top-of-atmosphere radiance, and then retrieving SPM concentration from water-leaving radiance reflectance of the Yangtze Estuary and its adjacent sea. Results are validated by the Landsat-8/OLI imagery together with autonomous fixed station data, and influences of human activities (e.g., waterway construction and shipping) on SPM distribution are analyzed.

Keywords: GF-1/WFV; Landsat-8/OLI; Suspended Particulate Matter; atmospheric correction.