Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

J Am Soc Mass Spectrom. 2017 Apr;28(4):688-703. doi: 10.1007/s13361-016-1530-x. Epub 2016 Nov 28.

Abstract

We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

Keywords: Collision-induced dissociation; Density functional theory; Glycans; Ion structure; Labeling; Mass spectrometry; Metals.